Preparation of Pt–Ru/C as an Oxygen-Reduction Electrocatalyst in Microbial Fuel Cells for Wastewater Treatment

نویسندگان

  • Gaixiu Yang
  • Yongming Sun
  • Feng Zhen
  • Xinyue Cao
  • Xiaojie Chen
  • Zhongming Wang
  • Zhenhong Yuan
چکیده

Carbon-supported Pt–Ru alloys with a Pt/Ru ratio of 1:1 were prepared by NaBH4 reduction at room temperature. X-ray diffraction (XRD) measurements indicate that the as-prepared Pt–Ru nanoparticles had a face-centered cubic (fcc) structure. X-ray photoelectron spectroscopy (XPS) analyses demonstrate that alloying with Ru can decrease the 4f electron density of Pt, which results in a positive binding energy shift of 0.2 eV for the Pt 4f peaks. The catalytic properties of the synthesized Pt–Ru alloy catalysts were compared with those of commercial Pt/C catalysts by linear sweep voltammetry (LSV). The results show that the mass activity of the oxygen reduction reaction (ORR) is enhanced by 2.3 times as much mass activity of Pt relative to the commercial Pt/C catalyst. Single-chambered microbial fuel cell tests also confirm that the Pt–Ru alloys as cathode catalysts have better performance than that of commercial Pt/C catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesized Bimetallic Electrocatalyst for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells

In the present study, a step by step process was applied to synthesize bimetallic electrocatalyst (Ru and Pt on VulcanXC-72R). This process can reduce the amount of platinum and increase the gas diffusion electrode (GDE) performance in the cathodic reaction of polymer electrolyte membrane fuel cells (PEMFCs). Using the impregnation by hydrothermal synthesis method, a series of electrocatalysts ...

متن کامل

High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells

Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, sta...

متن کامل

Synthesis of Supported Pt Alloy three Dimensional Rhombus Shapes Nanoparticles for Oxygen Reduction Reaction

In this study PtFeCo ternary alloys nanoparticles of three dimentional (3D) rhombus shapes dispersed on graphene nanosheets (PtFeCo/Gr) were successfully prepared and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. A combination of analytical techniques including powder X-ray diffraction, X-ray photoelectron spectra, inductively coupled plasma-...

متن کامل

Preparation and Characterization of Electrocatalyst Nanoparticles for Direct Methanol Fuel Cell Applications Using β-D-glucose as Protection Agent

In this study, the activity, stability and performance of carbon supported platinum (Pt/C) electrocatalyst in cathode and carbon supported Pt and ruthenium (PtRu/C) electrocatalyst in anode of direct methanol fuel cell (DMFC) were studied. The Pt/C and PtRu/C electrocatalysts were prepared by impregnation reduction method. The β-D-glucose was used as protection agent to reduce the particle size...

متن کامل

Using the Palladium as core and Platinum as shell for ORR

In this work, electrocatalyst with core-shell structure (Pd as core and Pt as shell on VulcanXC-72R) was synthesis. Not only this structure can reduce the amount of platinum but it also can increase the gas diffusion electrode (GDE) performance in cathode reaction (Oxygen Reduction Reaction or ORR) of polymer electrolyte membrane fuel cell (PEMFC). To this meaning, one series of electrocatalyst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016